本記事は、山口雄大氏の著書『この1冊ですべてわかる 需要予測の基本』(日本実業出版社)の中から一部を抜粋・編集しています。
新商品の需要予測モデル
グローバルで支配的なモデルはまだない
新商品需要予測の3つのモデル
最もむずかしく、ほとんどの企業が悩んでいるのが新商品の需要予測です。新商品の需要予測ロジックは大きく3種類に分類されています(Kahn,Kenneth B,2012年)。
(1)判断的モデル
予測というよりは目標や予算に近いのが、エグゼクティブからのトップダウン計画や営業担当者からの計画の積み上げです。他に、すでに紹介したデルファイ法や、消費者の心理、購買行動のフェーズの遷移率を推定するAssumption-Based Modelingなどがあります。
(2)定量的モデル
時系列モデルや回帰モデルなどが挙げられていますが、これらは過去データが必要なため、発売前に行なう場合は新商品と特徴(属性や販売チャネル、マーケティング・プロモーションなど)が類似する商品のデータを活用することになります。
(3)市場調査
これは需要予測というより、商品開発やマーケティング・プロモーション検討のために行なわれるものです。商品コンセプトの魅力を聞くコンセプトテストや、機能的な評価のためのユーステスト、市場規模を推計するためのテストマーケティングなどがあります。
このように、新商品の需要予測にもさまざまなロジックがあります。しかし、圧倒的に高い精度のものはなく、グローバルでも支配的なものはありません(Chaman L, Jain,2017年)。そこで需要予測で先進的な企業では複数の予測モデルを使い、三角測量的(Triangulation)に“幅を持った”需要予測を行なう傾向があるそうです。これはレンジ・フォーキャスト(Range Forecast)と呼ばれます(Chaman L, Jain,2020年)。
商品の新規性が高いほど、ロジックによって予測値がばらつきます。これを逆手にとり、需要の変動幅と捉える発想の転換です。実際に私も、次の3つのモデルを駆使し、レンジ・フォーキャストを主導してきました。
- ①類似商品ベースのAnalogous予測(Analogous Forecasting)
- ②AHP(Analytical Hierarchy Process)の応用
- ③機械学習(AI)
AHP(Wind & Saaty,1980年)は階層化意思決定法と訳され、複数の判断軸と選択肢がある意思決定の因果関係を階層構造で表現した後、一対比較と行列計算で選択肢のウエイトを算出し、意思決定を支援する手法です。これは需要予測としては使われてきませんでしたが、私はこれを応用したモデルを設計し、提案しています。これは特に、類似商品がない場合に有効で、他のロジックより高精度の傾向があることを示しました(Yamaguchi & Iriyama,2021)。
ビジネスの需要予測は、最終的には意思決定です。
デマンドプランナーだけでなく、マーケティング、営業、経営管理部門などで合意するコンセンサス計画です。その判断を高度化するために、新商品の予測モデルは使われるべきだといえます。ひとつのモデルからの予測値を信頼しすぎるのではなく、使われているデータの網羅性やロジックの論理性を踏まえて、冷静に解釈できるスキルが重要になります。
多くの企業で使われている新商品の予測モデル
私の調査から、104社中半数以上が類似商品ベースのロジックを採用しているという結果が得られています。ここで紹介した多くの新商品予測モデルも類似商品のデータ分析を伴うものです。
定量的モデルはすでに記載した通りですが、市場調査も、多くのものは自社、他社の同価格帯、同カテゴリーの商品との比較を行ないます。売上が既知の類似商品と調査結果を比較することで、新商品の需要予測を行なうからです。中には新商品のみの評価を基に、需要を予測する調査もありますが、補正係数を掛けることが多く、これは類似商品の過去データを参考に設定される場合がほとんどです。
類似商品の分析ベースのモデルの次に多かったのが、目標ベースでした。これは主に判断的モデルです。トップマネジメント層が企業の状況、市場環境、競合の攻勢などを踏まえて設定したり、営業担当者が売上予算、担当エリアでの顧客のニーズ、競合とのシェア争いなどを踏まえ、報告したものを積み上げるものです。
2018〜2020年の調査では、発売前の需要予測にAIを使っている企業はありませんでした。今後はひとつのモデルとして加わってくると思いますが、最終的には関連部門間でのコンセンサスが必要になるというオペレーションは変わらないでしょう。
資生堂販売株式会社で入出庫、検品、配達等のロジスティクス実務を経験後、株式会社資生堂で10年以上にわたりさまざまなブランドの需要予測を担当。2021年現在はS&OPマネジャー。新商品の需要予測モデルや日別POSデータを使った予測システムの開発、需要マネジメントのしくみ設計や需要予測AIの構築をリードした。
2016年インバウンド需要予測の手法が秘匿発明に認定される。2019年からコンサルティングファームの需要予測アドバイザーに就任。JILS「SCMとマーケティングを結ぶ! 需要予測の基本」講座講師。日本オペレーションズリサーチ学会や経営情報学会で需要予測に関する論文発表を実施。専門誌「ロジスティクスシステム」(日本ロジスティクスシステム協会)に、コラム「知の融合で創造する需要予測のイノベーション」を連載中。
他の著書に『需要予測の戦略的活用』(日本評論社)、『品切れ、過剰在庫を防ぐ技術』(光文社新書)、『全図解 メーカーの仕事』(共著・ダイヤモンド社)がある。※画像をクリックするとAmazonに飛びます